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Measurements in a system are performed automatically by using data acquisition cards typically consisting of 
an amplifier, a sample/hold circuit and an analog-to-digital converter. The results obtained from these cards are 
processed by a program. The processing algorithms are often of sophisticated numerical structure and, in this 
situation, the determination of inaccuracy of the system output data needs building a system error model. The 
base of the error model construction should be a model of a single measurement result delivered at the output of  
the card. The paper presents a model which has been obtained on the basis of an analysis of the quantization 
process consisting in a direct comparison of the measured quantity with a standard of quantum character. In a 
measuring system the quantization is realized by an AD converter, which measures a sample of a time-varying  
input quantity. The assumption that the sampling is performed at any moment enables obtaining the model 
described in probabilistic categories, which may be the basis of the uncertainty calculation of the system output 
data.  
 
Keywords: measurement system, data acquisition card, single measurement result model, error model, 
quantization 
 
 

1.INTRODUCTION 
 

The operation of modern measuring systems can be divided into two main parts commonly 
called data acquisition and data processing. Data acquisition consists in measuring input 
quantities of a system and collecting the digital measurement results in the memory of 
microprocessors or microcomputers. The collected data are then processed by different kind 
of algorithms in order to obtain final results in a form suitable for visualization and 
transmission to actuators when the system controls an object. In both cases it is necessary to 
know how accurate, or calling it better – inaccurate the final results are. This necessity should 
be formally expressed as a requirement that every number being the final result has to be 
provided for a second number which describes the inaccuracy of the first one. Taking into 
account that all operations of a system are performed automatically, the inaccuracy descriptor 
should be calculated by the system itself, so one may demand from the system that it is 
capable of self-determining its inaccuracy. 

Such an ability of a system may be achieved when all measurement results obtained in the 
system are described in modeling categories, i.e. every result is a composition of a number 
being the measurement result and other component modeling factors which influence on the 
inaccuracy of this result. Traditionally, these factors are expressed as errors generally 
described as random when one takes into account that the system work is initiated by external 
events of random character. 

The basis of determination of such a model is the metrological analysis of instruments used 
in systems to obtain measurement results. The most popular one is the so called data 
acquisition card applied in computers and its equivalent in modular systems, i.e. the ADC 
module. Both kinds of instruments are of the same construction, shown in Fig. 1, and they are 
called measuring cards in this paper. 
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Fig. 1. Basic scheme of measurements in a system. 
 

Figure 1 shows the scheme of the measuring card when M input quantities x1(t), …, xM(t) 
are measured by the same card. They are described as varying in time because practically 
there are no quantities constant in time – the classification of a quantity depends on the time 
of its observation (measurement). Every quantity is individually converted by its sensor, 
denoted by S, to an electrical quantity – more often it is a voltage signal. The converted 
signals are commuted by an analog multiplexer M what means that in its chosen state only 
one selected input quantity may be measured. To simplify considerations, one assumes that 
the multiplexer state does not change, so the measured input quantity is only one and it is 
denoted as x(t). It is converted to a voltage signal which is conditioned by the programmable 
amplifier A, i.e. an amplifier with digitally changed amplification coefficient, to a voltage 
level suitable for the range of the analog-to-digital converter ADC. The conditioned signal 
y(t) is sampled by the S/H circuit at the selected moment ts, s is the symbol of the sampling 
moment, and held for a time necessary to convert the sample by the ADC to a number Nq(ts). 

It is important to emphasize that AD conversion is a measurement process performed on 
the quantization principle. An analysis of this process is the basis of providing means of 
description of the whole measurement chain shown in Fig.1 and enables building a model of a 
measurement result obtained at its output. The starting point of building such a kind of model 
is the selection and description of the error sources arising in the chain when a time-varying 
quantity is measured [1]. 
 
 

2.MEASUREMENT MODEL OF A QUANTIZATION RESULT 
 

Quantization, from the measurement point of view, is the process of direct comparison of 
the measured quantity with the sum of the same kind elementary measurement standards 
called quantum. In voltage AD converters, the quantum sum is usually obtained by using a 
voltage divider built from resistors of the same value R, or the values R and 2R [7]. The 
quantizer scheme, in the simplest form, is shown in Fig. 2. 
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Fig. 2. Basic scheme of a quantizer. 



The quantized value of x is compared with the sum of n quantum q by the comparator 
COMP. Let us assume that the state of comparator s = 1 if x – nq > 0, in the other case s = 0. 
The task of the control circuit is to collect a minimum number of quantum for s = 0. Let us 
denote this number as Nq + 1, where Nq is indication of the quantizer being the number of 
quantum assigned to the value of the measured quantity x, as shown in Fig. 3. 
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Fig. 3. Interpretation of a quantization result. 

 
Accordingly with the interpretation, given by Fig. 3, the quantization process consists in 

the assignment of an interval to the measured quantity, which is caused by the quantum 
character of the standard used in this process. Therefore, one can write that the true value of 
the measured quantity fulfills the inequality: 
 
 ( )qNxqN qq 1+≤< . (1) 
 

The Equation (1) describes the relation between values of the measured quantity x and 
values of the number Nq obtained as the result of quantization for x changes in a working 
range of [0, xmax], for which Nq takes integer values from 0 to Nmax. Therefore, Eq. (1) may be 
written as a function: 
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xentN q , (2) 

 
where ent is the symbol of the function entier which delivers the integer part of its argument. 
The graphical form of Eq. (2), i.e. the quantizer characteristic, is shown in Fig. 4a. 
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Fig. 4. a) Characteristic of the quantizer, b) distribution of the quantization error. 
 

To simplify further considerations, let us denote: 
 
 qNx q  ≡( , (3) 
 



where x(  is the quantizer indication expressed in units of the measured quantity. Introducing 
the relation (3) to the Eq. (1) one obtains: 
 
 qxxx +≤< ((  (4) 
and then 
 qxx ≤−< (0 . (5) 
 

Let us define the expression xx (−  as a quantization error: 
 
 xxq

(−=:δ , (6) 
 
since it describes how much the measured value differs from the suitable indication of the 
quantizer. After introducing the definition (5) to the Eq. (4), we have: 
 
 qq ≤< δ0 , (7) 
 
what means that, in the considered situation, values of the quantization error change in limits 
from 0 to q. If one takes into account that all values of the measured quantity may be treated 
as equally probable in its working range, the quantization error is described in probabilistic 
categories. For the quantizer characteristic as in Fig. 4a, its probability density function ( )qg δ  
(the error distribution ) is shown in Fig. 4b. 

The expected value of the error distribution as in Fig. 4b  
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is different from 0 what means that the measurement result is burdened by a systematic error. 
This error can be corrected by replacing the indication x(  by the value: 
 
 qxx 5.0ˆ += ( , (9) 
 
called an evaluation of the measured result (i.e. measured result after correction of systematic 
error). After introducing Eq. (9) to inequality (5) one obtains ( ) qqxx ≤−−< 5.0ˆ0  and then 
 
 qxxq 5.0ˆ5.0 ≤−<− . (10) 
 

One achieves the same effect as described by Eq. (10) by adding 0.5 to Nq. The 
characteristic of such a kind of quantizer is described by the equation:  
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and shown in Fig. 5a. The suitable quantization error distribution is presented in Fig. 5b. For 
the next considerations one assumes that all analyzed errors, i.e. both the quantization error 
and other ones, are described by probability density functions with the expected values equal 
to 0. 
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Fig. 5. a) Characteristic of the quantizer described by Eq. (11), b) distribution of its quantization error. 

 
The definition (6) of the quantization error may be the basis of determination of the 

quantization result model. According to Eq. (6), one can write: 
 

 qxx δ+= ( , (12) 
 
or for the quantizer with correction of systematic error described by Eq. (9), 

 
 qxx δ+= ˆ  (13) 
 
where the distribution of the error δq is symmetrical as shown in Fig. 5b. Both Eqs. (12) and 
(13) describe values of the measured quantity after quantization, i.e. the measurement result 
obtained in the quantization process. Accordingly with these equations, the measurement 
result is the sum of the quantizer indication (or the corrected quantizer indication) and 
a realization of the suitable error δq. When this error is described in probabilistic categories, 
the quantization result has random properties. In this case, the realization of the error δq is 
taken from the set described by probability density function g(δq) shown properly in Fig. 4b 
or Fig. 5b. 

The model of the quantization result described above contains only one error caused by the 
quantum character of the standard. In practice, there are several error sources that influence 
the quantization result, such as nonlinearities, noise, drifts and others. Assuming that the all 
separated errors influence the result additively, one can write that the general model is of the 
form of sum: 
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where Iq is the number of all errors separated in the quantization process. Relations between 
the errors in Eq. (14) can be determined in the simulation way as described in Chapter 4. 
 
 
 
 
 



3. MEASUREMENT RESULT MODEL OF SINGLE SAMPLE OF SYSTEM INPUT 
QUANTITY 

 
With the assumption that all input quantities in a system are measured by using cards built 

as shown in Fig. 1, the scheme of the measuring chain for every quantity is of the form 
presented in Fig. 6. Propagation of measurement information from the input to the output of 
the chain can be described in signal categories. Initially, the analog input quantity x(t) is 
converted by the sensor S to a voltage signal yS(t), which after that is amplified (by the 
element denoted as A) to the level suitable for next operations. The conditioned signal yA(t) is 
sampled by the S/H circuit at the moment ts and then quantized by an analog-to-digital 
converter ADC. The quantization result is delivered to the output of the ADC as the number 
of quantum assigned to the value of the sample. The input signal x(t) is burdened by the 
disturbances denoted as δin(t) and every element of the chain introduces its own errors 
denoted properly as δS(t), δA(t), δS/H(t) which are treated as additive to the propagating signal. 
The element input signals, burdened by errors, are distinguished by a tilde.  

Further considerations concern the method of building a model of a single output datum, 
which is the measurement result of one sample of the input quantity. Such a kind of model has 
to contain a description of the error sources, which influence the inaccuracy of the result, with 
the assumption that all systematic errors have been corrected. To simplify considerations it is 
assumed that the chain can be treated as linear. 

For the presented assumptions, the sample at the output of the S/H circuit taken at the 
moment ts can be described as: 
 
 ( ) ( )( ) ( )( ) ( )( ) ( )[ ] ( )sS/HttAASSins tδtδStδStδtxty

s
++++= =

~ , (15) 
 
where SS is the sensitivity of the sensor S and SA is the amplification coefficient (sensitivity) 
of the amplifier A. Both values of SS and SA are constant. 

The sample ( )sty~  is measured on the principle of quantization. It means that, basing on the 
quantization result model (14), the measurement result of this sample can be written as:  
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where ( )stŷ  is the evaluation of the sample value and ( ) ( )ssˆ tqNty q= , ( )stNq  is the number 
(indication) at the output of the AD converter after quantization of the sample, 

( ) qqi Iit ,,1,s K=δ  are realizations of the errors of the quantization process. Comparing 
Eq. (15) with (16), one obtains: 
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After transformation of Eq. (17), we have: 
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Denoting 

 
AS

1
SS

c =  (19) 

 
and the coefficients of the errors properly as Iaaa ,,, 21 K , one can write Eq. (18) in the form: 
 
 ( ) ( ) ( ) ( ) ( )ss22s11ss ˆ tatatatyctx IIδδδ ++++= K , (20) 
 
where I is the number of all errors separated in the described measuring chain. 

Equation (20) is the mathematical model of the instantaneous value (sample) of the system 
input quantity x at the moment ts. Accordingly with the general treatment, applied at first to 
the model (13) of a quantization result, the sample model after measurement may be written 
as: 
 
 ( ) ( ) ( )sss ˆ ttxtx xδ+= , (21) 
 
where ( )stx̂  is the evaluation of the sample value and ( )stxδ  is a realization of the sample 
resultant error. As the result of comparison of Eqs. (20) and (21), one obtains two equations. 
The first one is: 
 
 ( ) ( )ss ˆˆ tyctx =  (22) 
 
and, when one takes into account Eq. (3), it has the form: 
 
 ( ) ( )ss

ˆˆ tNqctx = . (23) 
 
Equation (23) describes the dependence of the sample value from the number ( )s

ˆ tNq  obtained 
at the output of the A/D converter as the result of quantization at the moment ts. Therefore, the 
Eq. (23) may be treated as the reconstruction equation [8] of the input quantity sample. 

The second equation 
 
 ( ) ( ) ( ) ( )ss22s11s tatatat IIx δδδδ +++= K , (24) 
 
describes relations between the value of the sample resultant error and realizations of partial 
errors arise during signal processing in the measuring chain. Equation (24) determines the 
error model of the input quantity sample measured in the system by using the described chain. 
It is a linear combination of  the sample partial errors and constant coefficients Iaaa ,,, 21 K . 
 
 

4. IDENTIFICATION AND VERIFICATION OF THE ERROR MODEL 
 

Identification of the model given by Eqs. (23) and (24) consists in determination of the 
coefficients and descriptions of errors. As it results from Eq. (17), values of the coefficients 
can be determined on the basis of characteristics of the chain elements or of measured values, 
whereas the problem of error description is much more sophisticated because the errors 
depend on working conditions of the measuring chain. To simplify considerations, let us 
assume that the input quantity is varying in time periodically and one instantaneous value 



(sample) of it is measured. The measurement moment ts is not correlated with the phase of the 
input quantity waveform, which means that the sampling moment may be described as 
random in this quantity period.  

Identification of the error sources consists in searching for a function describing sets of the 
error values arisen in working conditions and determining relations between the errors if such 
relations exist. The simplest way is to find suitable parameters in the materials delivered by 
the producers of elements, for example the noise variance of the amplifier applied in the 
chain. Some parameters may be determined analytically on the basis of signal processing 
analysis as it has been done in Chapter 2 for the quantization error, the distribution of which is 
shown in Fig. 5b. But one should notice that these possibilities are seldom applied in practice 
and the main way of identification must be realized experimentally, especially when the error 
is described in probabilistic categories. 
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Fig. 6. Propagation of the input signal in the system measuring chain. 
 
There are two kinds of experiments useful in this situation – performed by means of 

measurements (physically) or in a simulation way with the use of the Monte Carlo method. 
Both kinds consist in acquisition of values of the selected error in the determined 
measurement conditions. Obtained in such a way, the error value set is then presented in 
histogram form which, if possible, can be approximated by a probability density function. The 
relation between a pair of error sources is described by a correlation coefficient [6]. 
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Fig. 7. System for identification of the measuring card errors. 
 
System elements, errors of which must be determined first of all, are measuring cards. The 

scheme of an experimental system for identification error sources of a measuring card is 
shown in Fig. 7. The input of the investigated card is connected with a generator which 
produces digitally synthesized voltage waves calibrated by using a high accuracy digital 
voltmeter. Fig. 8 describes the identification procedure. One step of the procedure consists in 
measuring a sample of the input signal at the selected moment ts and comparing the obtained 
result ( )sty~  with the known instantaneous value y(ts) of the synthesized signal. Subtraction of 
the compared values gives one error value δ(ts) which is introduced to the error value set 
represented by a histogram. 
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Fig. 8. Scheme of procedure of error value set determination. 
 
The identification procedure needs a great number of steps to obtain one histogram and, 

moreover, experiments have to contain many procedures performed in such measuring 
conditions which enable to extract a description of one error source from histograms 
containing values of several partial errors. Problems which appear in practice while using the 
measurement method have been described in [5] where an experimental system applying a 
VME bus standard and exemplary histograms of errors obtained for the VADC32 card have 
been presented. 

The measurement identification of error sources is a time-consuming process and needs 
high quality measurement tools organized in a system. For some errors, the same effect can be 
achieved in a much simpler way – by using simulation. The scheme of obtaining an error 
value set is the same as shown in Fig. 8 but the whole procedure is realized using simulated 
data. Properties of this kind of identification procedure are illustrated by the following 
example. 

 
Example 

Let us take into consideration the measuring chain shown in Fig. 9 with the assumption 
that only two errors are taken into account. The first one is the dynamic error introduced by 
the amplifier A while the second one is connected with the quantization process performed by 
the analog-to-digital converter ADC. 
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Fig. 9. Scheme of exemplary measuring chain. 
 

The aim of the described simulation experiment is to verify the hypothesis that these two 
errors mentioned above may be composed according to the general linear Eq. (24) in the 
situation when the quantization process is nonlinear, as described by Eq. (11). To investigate 
this problem let us assume that the input signal of amplifier A is sinusoidal, i.e. 

( ) tYty ωsinSS = , fπω 2= , where f is the frequency and YS is the amplitude of the signal. Let 
the dynamic properties of the amplifier be described by a first-order linear differential 
equation. Taking into account these assumptions, the amplifier spectral transmittance is of the 
form: 
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where f0 is the cut-off frequency (bandwidth) and SA - the amplification coefficient (static 
sensitivity of the amplifier). 

Accordingly with Eq. (25), the time form of the amplifier output signal is given as: 
 
 ( ) ( )ϕω += tYty sin~

AA , (26) 
where:  
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The dynamic error of a measuring transducer is generally defined as: 

 
 ( ) ( ) ( )tytyt ideal−=δ , (29) 
 
where yideal(t) is the waveform at the output of the transducer which is treated as dynamically 
ideal. The transmittance of the ideal transducer does not depend upon frequency, i.e. it is 
equal to the amplification coefficient SA when the amplifier is taken into account. From 
Equations (25) and (29) it results that the spectral form of the amplifier dynamic error in the 
considered conditions is given as: 
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Therefore, the amplitude of the dynamic error is described by the expression: 
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To simplify considerations, let us take that the amplitude YS of the input signal is equal to 

1V and the amplification coefficient 
V
V1A =S . Moreover, it is assumed that the cut-off 

frequency is f0 = 105 Hz and the frequency of the input signal is f = 50 Hz. In this case, it 
follows from Eq. (31) that the amplitude of the amplifier dynamic error is: 
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The amplifier output signal, being the sum of the ideal one and the dynamic error, is 

sampled at the moment ts and then quantized. Let us take that quantization is performed by a 
12-bit, bipolar, binary AD converter, the input range of which is from –1V to 1V. Therefore, 
the value of its quantum is: 
 

 ( ) V.2
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V1V1 11
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The aim of the simulation experiment is the determination of the histogram which 

describes the resultant error value set being a composition of the dynamic and quantization 
errors and then calculation of the resultant variance. The experiment has been realized in 
200 000 steps. Every step consists of several activities and it begins with the selection of the 
sampling moment ts. Taking into account that sampling may be initiated at any moment, one 
assumes that it is determined randomly with rectangular distribution in the period of the input 
signal, the value of which is: 
 

 s.0.02s
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===
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Next, using Eq. (26), the value of one sample has been calculated and the obtained number 
has been located at the suitable bar of the dynamic error histogram. Moreover, the sample has 
been quantized accordingly with Eq. (11) and the quantization result has been placed at the 
second histogram and used for calculation of the resultant error variance. 

The histograms, obtained as the results of the described experiment, are shown in Fig. 10. 
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Fig. 10. Exemplary histograms: a) amplifier dynamic error, b) resultant error composed of dynamic and 
quantization error. 



On the basis of the resultant error variance calculated in the experiment, one can determine 
the standard deviation of this error. It takes the value: 
 
 σexp = 3.8096·10-4 V. (35) 
 
This value can be compared with the value of the standard deviation obtained as the result of 
theoretical considerations, which enables to arbitrate whether any correlation between the 
dynamic and the quantization error exists what can be expected as the quantization process is 
nonlinear (see Eq. (11)). The value of the standard deviation of a sinusoidal signal with 
amplitude A is 2/A  and the standard deviation of the quantization error with rectangular 
distribution, shown in Fig. 5b, is 22/q  [6]. Therefore, basing on the values given by 
Eqs. (32) and (33), one can determine analytically the resultant error standard deviation value 
as [9]: 
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Comparing the values given by Eqs. (35) and (36), one can draw the conclusion that 

nonlinearity of the quantization has no influence on relations between the dynamic and 
quantization error because its correlation coefficient is practically equal to 0 [6]. To make sure 
if this statement is true for a large enough range of quantum values, one has determined the 
standard deviation values in the simulation and analytical way for typical bit numbers of AD 
converters. The obtained values are presented in Table 1. 
 

Table 1. Experimentally σexp and analytically σanal determined values of the dynamic and quantization error 
standard deviations obtained for n-bit AD converters with assumption that amplitude of the dynamic error is 

equal to the maximum value of the quantization error. 

n 4 8 12 16 

expσ [V] 5.62·10-2 3.60·10-3 2.22·10-4 1.39·10-5 

analσ [V] 5.70·10-2 3.62·10-3 2.23·10-4 1.39·10-5 

 
 

5. FINAL REMARKS AND CONCLUSIONS 
 

The model of a measurement result presented in the paper has been developed on the basis 
of an analysis of the quantization process and description of properties of the typical 
measuring chain used in systems. It is necessary to emphasize that it is the model of one 
measurement result. There is no problem to use the model in the situation when one 
calculates the mean value of a series of measurement results obtained in the same conditions 
(for a constant input signal). Generally, one can state that the described model can be applied 
as the basis of an error model construction for practically all types of data processing 
algorithms used in measuring systems [2]. It permits to build a system error model. 

In accordance with the presented model, the measurement result is the sum of the result 
evaluation and the realization of the resultant error described as a linear combination of partial 
errors. It means that descriptions of all these errors have to be known before using the model 
for calculation of the result's inaccuracy. The error identification can be performed both in an 
analytical and experimental way, in the second case one can do it by using measurement or 
simulation experiments.  



For a time-varying input quantity and in a situation when the moment of sampling this 
quantity is unrestricted (practically admitted as random), the partial errors are described in 
probabilistic categories. Ina such a case, inaccuracy of a measurement result can be expressed 
as uncertainty [9]. The definition which enables defining uncertainty as a parameter of an 
error value set has been proposed in [2, 3]. Knowing the error model of the measuring system 
and basing on this definition, one may use the mathematical apparatus described in paper [2] 
for self-determination of uncertainties of data obtained at the system output. 
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